Do latent tree learning models identify meaningful structure in sentences?

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Do latent tree learning models identify meaningful structure in sentences?

Recent work on the problem of latent tree learning has made it possible to train neural networks that learn to both parse a sentence and use the resulting parse to interpret the sentence, all without exposure to groundtruth parse trees at training time. Surprisingly, these models often perform better at sentence understanding tasks thanmodels that use parse trees from conventional parsers. This...

متن کامل

Learning Latent Tree Graphical Models

We study the problem of learning a latent tree graphical model where samples are available only from a subset of variables. We propose two consistent and computationally efficient algorithms for learning minimal latent trees, that is, trees without any redundant hidden nodes. Unlike many existing methods, the observed nodes (or variables) are not constrained to be leaf nodes. Our algorithms can...

متن کامل

Nonparametric Latent Tree Graphical Models: Inference, Estimation, and Structure Learning

Tree structured graphical models are powerful at expressing long range or hierarchical dependency among many variables, and have been widely applied in different areas of computer science and statistics. However, existing methods for parameter estimation, inference, and structure learning mainly rely on the Gaussian or discrete assumptions, which are restrictive under many applications. In this...

متن کامل

Learning to Identify Subjective Sentences

Subjective sentences describe people’s opinions, points-of-view, interpretations, comparisons, sentiments, judgments, appraisals or feelings toward entities, events and their properties. Identifying subjective sentences is the basis for opinion mining and sentiment analysis and is important in applications like political analysis, social media analytics and product review analytics. We use stan...

متن کامل

Meaningful Models: Utilizing Conceptual Structure to Improve Machine Learning Interpretability

The last decade has seen huge progress in the development of advanced machine learning models; however, those models are powerless unless human users can interpret them. Here we show how the mind‘s construction of concepts and meaning can be used to create more interpretable machine learning models. By proposing a novel method of classifying concepts, in terms of ‘form’ and ‘function’, we eluci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Association for Computational Linguistics

سال: 2018

ISSN: 2307-387X

DOI: 10.1162/tacl_a_00019